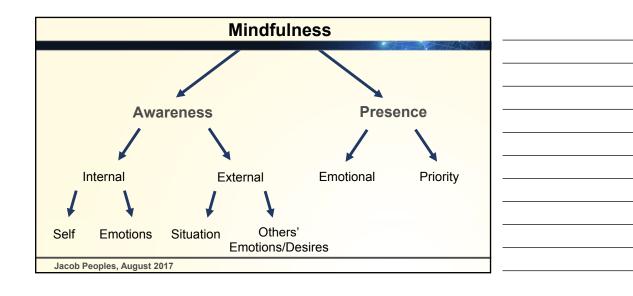
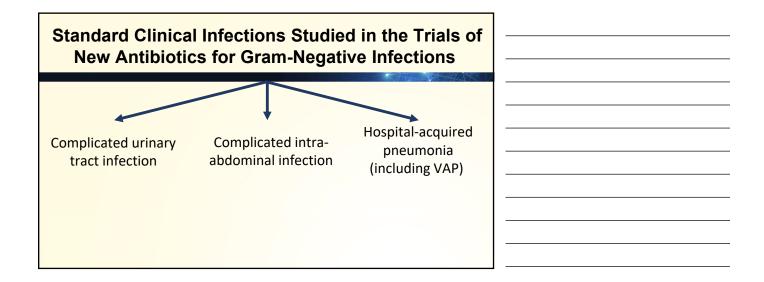
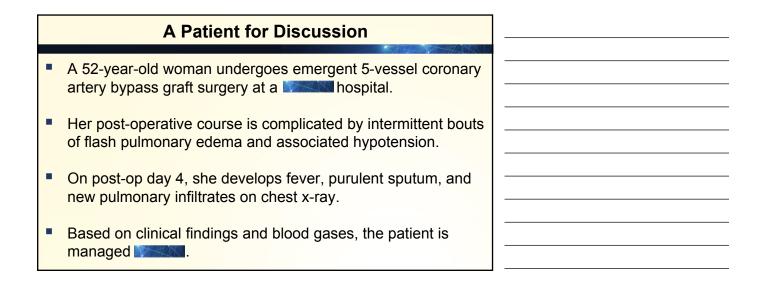


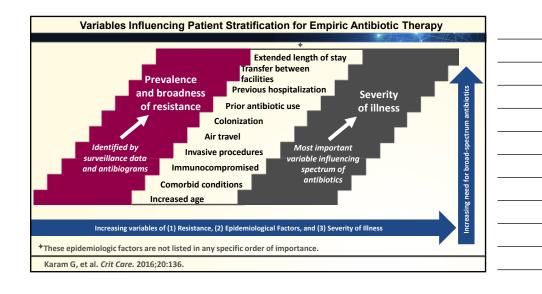
Conceptualization in Treating Infectious Diseases

A Framework to Achieve Optimal Outcomes

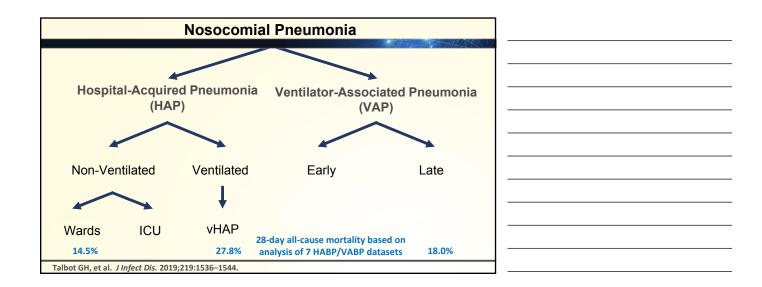

Activity Slides

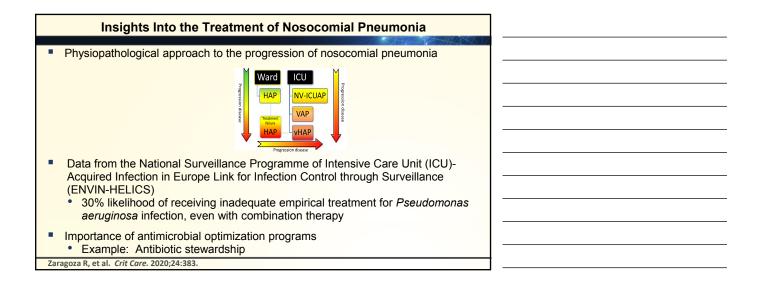

Conceptualization in Treating Infectious Diseases: A Framework to Achieve Optimal Outcomes 1

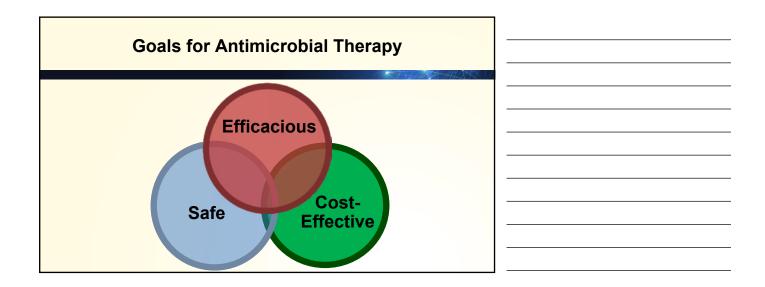

The Learning Process

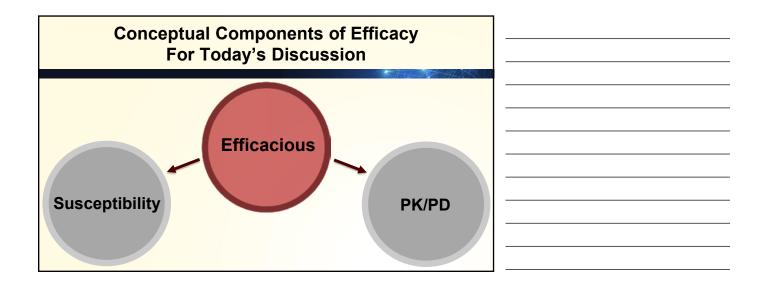

"The learning process can be divided into the accumulation of bits of information (memory) and the movement of these bits into patterns which are new to the individual (thinking). A little reflection will make it clear that the compulsive learner is incapable of thinking. There is always another bit of information to be memorized and, if they are all learned, there is little time to rearrange the bits in original patterns. It is also clear that without any bits there is no thinking. The hardest theoretical question in educational circles is the determination of the optimum number of bits for the most effective manipulation."


Stead EA, Jr. A Way of Thinking: A Primer on the Art of Being a Doctor. Carolina Academic Press, Durham, NC, 1995

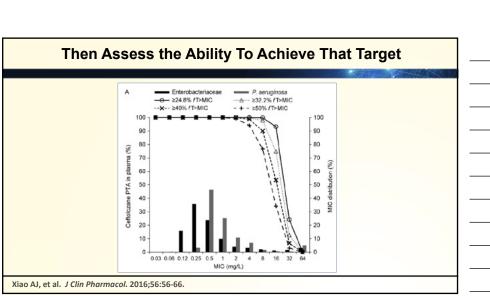


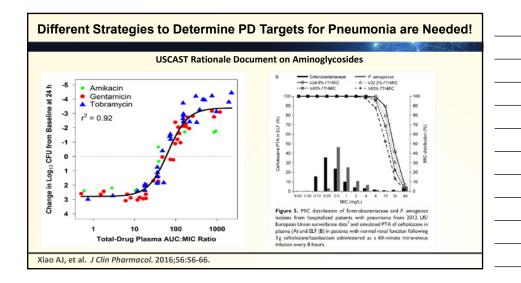


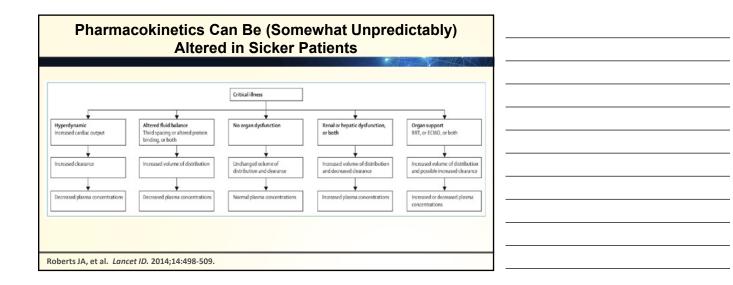




- Requirement for life-support measures
- Subjective impression about risk of mortality
- Characteristics of the infection itself



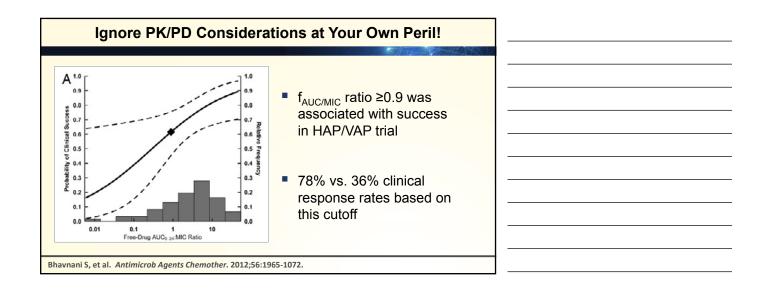

ABLE 3 Dose and T>MIC values f ype Enterobacteriaceae strains and for	or stasis and 1-log kill our P. aeruginosa strain	and the maximum ext 15"	tent of killing with 6-ho	urly dosing of ceftoloz	ane against four wild-	
Organism	Static dose (mg/kg/6 h)	T>MIC (%)	1-Log kill dose (mg/kg/6 h)	T>MIC (%)	Maximal killing (log ₁₀ CFU/thigh)	
Vild-type Enterobacteriaceae strains						
E. coli ATCC 25922	38.7	28.1	75.6	32.8	-2.95	,
E. coli NIH-J	5.69	28.0	14.3	32.3	-2.49	
K. pneumoniae ATCC 43816	61.2	25.2	127	32.0	-2.52	
K. pneumoniae 216	36.0	24.0	76.6	29.2	-2.42	
Mean		26.3 ± 2.1		31.6 ± 1.6	-2.60 ± 0.24	
aeruginosa strains						
P. aeruginosa ATCC 27853	21.3	24.3	88.5	33.9	-1.92	
P. aeruginosa 4034A	41.5	28.5	119	35.3	-2.61	
P. aeruginosa PO2	12.2	21.7	50.5	30.1	-2.24	
P. aeruginosa 313	21.4	21.4	51.9	26.7	-2.99	
Mean		24.0 ± 3.3		31.5 ± 3.9	-2.44 ± 0.46	
ean for all strains		25.2 ± 2.8		31.5 ± 2.8	-2.52 ± 0.35	
an values are expressed as means ± the	standard errors of the mean	n.				

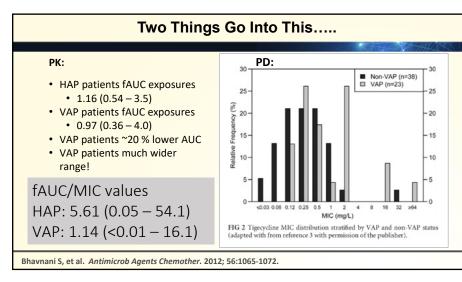


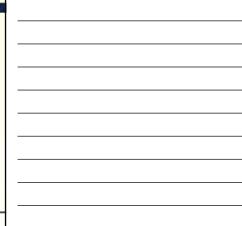
PD Targets May Differ for Pneumonia

Consideration needed for penetration of drug into lung
 Penetration can vary, even within a class

Drug	Penetration ratio (ELF to unbound plasma)
Ceftaroline	23%
Ceftazidime/Avibactam	31%/35% (total drug)
Ceftolozane/Tazobactam	59%
Piperacillin/Tazobactam	38%
Imipenem	55%

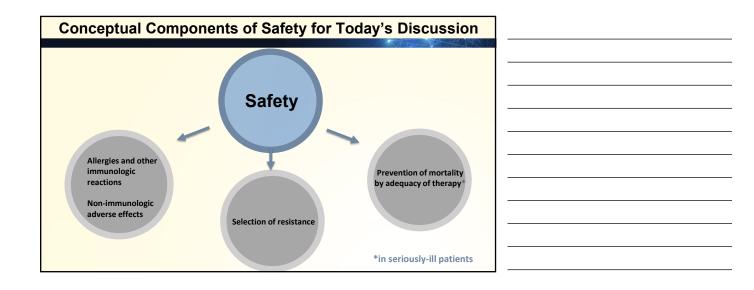

Impact of PK Changes in the Critically ill on ELF Concentrations

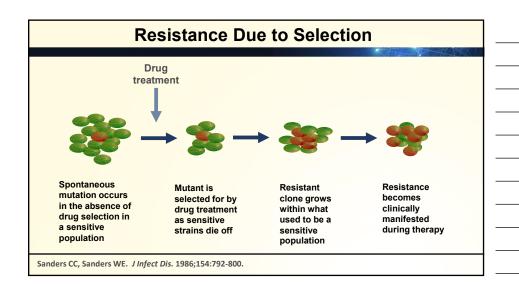

Drug	Penetration ratio (ELF to unbound plasma)
Piperacillin/Tazobactam	P: 39 – 85% T: 49 – 121%
Meropenem	25 – 81%
Ertapenem	20 – 32%
Cefepime	104%
Ceftazidime	21%

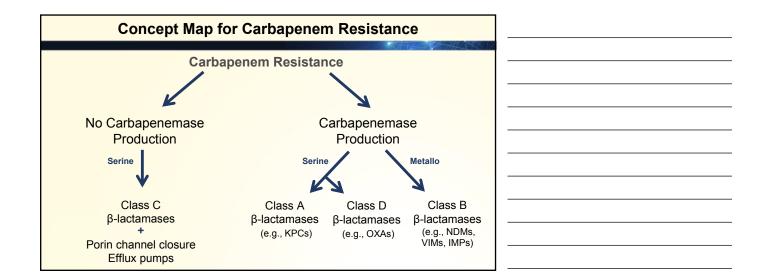

 In general, ELF penetration for β-lactams tends to be similar or higher in critically ill patients

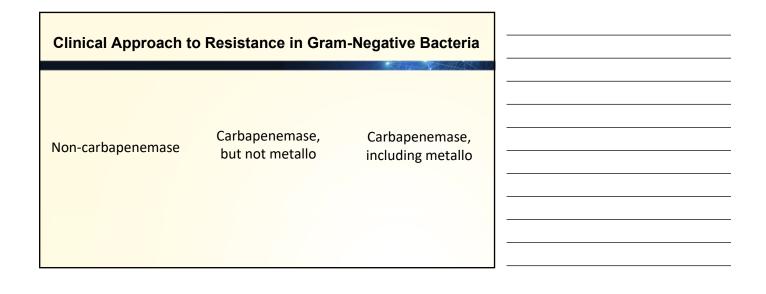
- The variability (range) however is often much higher
- Remember, however, the penetration is a percentage of a serum concentration which will be lower due to increased volume
- Complex interplay with clearance can impact exposures in serum and at target site

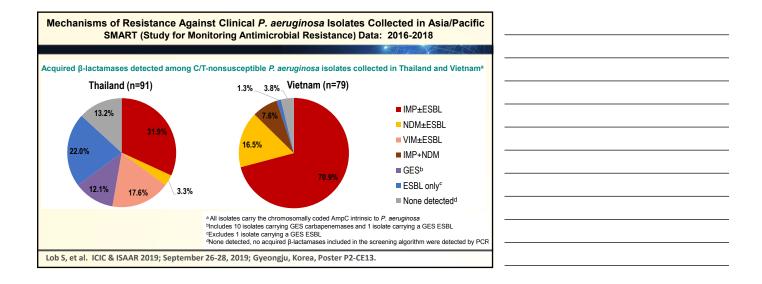
Rodvold K, et al. Curr Opin Pharmacol. 2017;36:114-123.

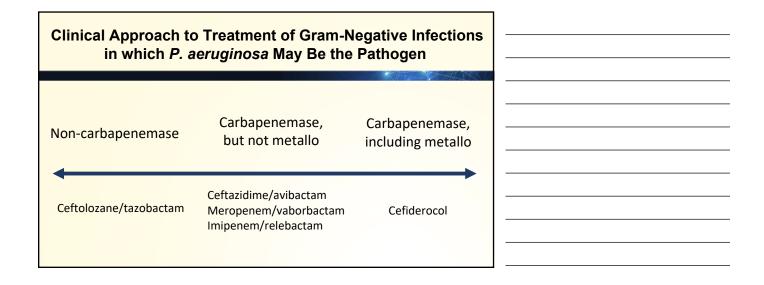


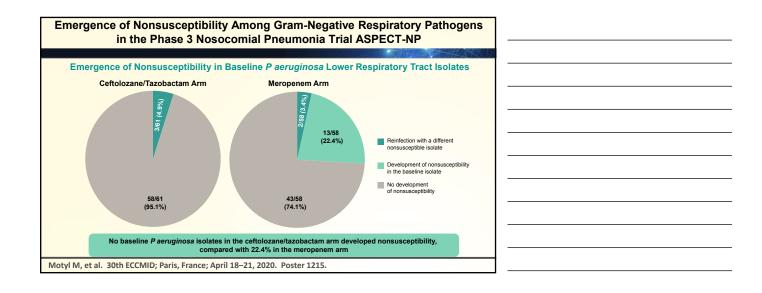


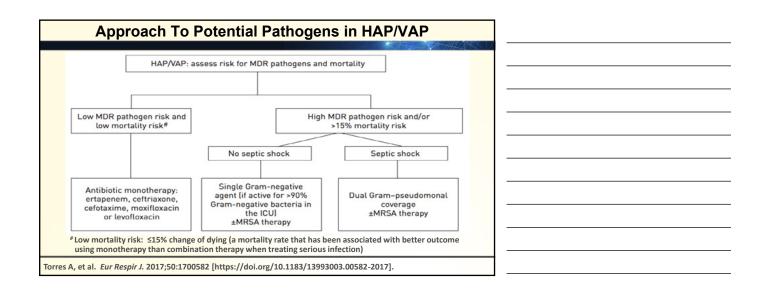



Comparison of Tigecycline with Imipenem/Cilastatin for the Treatment of Hospital-Acquired Pneumonia


	n/N	Tigecycline (95% CI) (%)	n/N	Imipenem/cilastatin (95% CI) (%)	Difference (95% CI)
CE population					
VAP					
Cure	35/73	47.9 (36.1-60.0)	47/67	70.1 (57.7-80.7)	-22.2 (-37.8 to -4.9
Failure	38/73	52.1	20/67	29.9	
Non-VAP					
Cure	147/195	75.4 (68.7-81.3)	143/176	81.3 (74.7-86.7)	-5.9 (-14.5 to 3.0)
Failure	48/195	24.6	33/176	18.8	







Conceptualization of Pseudomonas aeruginosa
A "ubiquitous" pathogen
Recurrent themes in the epidemiologic settings in which the pathogen occurs
 Variability in the expression of β-lactamases Chromosomally-mediated^{1,2} ampC β-lactamases Porin channel closure Efflux Plasmid-mediated ESBLs Adaptability to express resistance mutations to newer antimicrobial agents^{3,4,5}
¹ Lister PD, Wolter DJ. <i>Clin Infect Dis.</i> 2005;40:S105-S114. ² Quale J, et al. <i>Antimicrob Agents Chemother.</i> 2006;50:1633-1641. ³ MacVane SH, et al. <i>Antimicrob Agents Chemother.</i> 2017;61:e01183-17. ⁴ Ahmed MS, et al. 28 th ECCMID (April 21-24, 2018), Madrid, Spain. Abstract 00935. ⁵ Zamudio R, et al. <i>Int J Antimicrob Agents.</i> 2019;53:774–78.

Not at High Risk for	Not at High Risk of Mortality	High Risk of Mortality or	
Mortality and No Risk Factors Increasing the Likelihood of MRSA ⁺	but With Factors Increasing the Likelihood of MRSA+	Receipt of Intravenous Antibiotic in Prior 90 days ⁺	
One of the following:	One of the following:	Two of the following:	
Piperacillin-tazobactam	 Piperacillin-tazobactam 	Piperacillin-tazobactam	
Cefepime	 Cefepime or ceftazidime 	Cefepime or ceftazidime	
 Levofloxacin 	 Levofloxacin or ciprofloxacin 	 Levofloxacin or 	
 Imipenem or 	 Imipenem or meropenem 	ciprofloxacin	
meropenem	Aztreonam	 Imipenem or meropenem 	
	Plus	 Amikacin, gentamicin, or 	
	 Vancomycin or 	tobramycin	
	• Linezolid	Aztreonam	
		Plus	
		 Vancomycin or linezolid if 	
		coverage for MRSA <u>or</u>	
		 Agents for MSSA⁺ 	

So How Do We Make This Our Own?

Meropenem 75 83 78	7 88
Meropenem 75 83 78	
	8 87
Tobramycin 70	
Ciprofloxacin 61	
Amikacin 87	

ropriate" coverage

- These are general recommendations: <u>DO NOT neglect patient specific factors</u>
 Blind application of this to HAP can be problematic

М	ake Sure Aı Are Or	-		-	tions	
	Aleoi			VC III		
	Monotherapy	Cipro	Levo	Gent	Tobra	Amikacin
Pip-tazo	64	79	85	85	87	89
Cefepime	74	79	85	85	88	89
Ceftazidime	71	82	87	87	90	91
Meropenem	74	80	85	87	89	90
Ciprofloxacin	65					
Levofloxacin	72	1				
Gentamicin	79	1				
Tobramycin	83	1				
Amikacin	87	1				

	Monotherapy	Cipro	Levo	Gent	Tobra	Amikacin
Pip-tazo	64	75	81	70	81	72
Cefepime	74	79	85	78	83	79
Ceftazidime	71	82	87	80	86	80
Meropenem	74	80	85	78	85	79
Ciprofloxacin	65			_		
Levofloxacin	72]				
Gentamicin	79	1				
Tobramycin	83	1				
Amikacin	87	1				

What About Your Dosing Strategy?

	Monotherapy	Cipro	Levo	Gent	Tobra	Amikacin
Pip-tazo	64	75	81	70	81	72
Cefepime	74	79	85	78	83	79
Ceftazidime	71	82	87	80	86	80
Meropenem	74	80	85	78	85	79
Meropenem	83	85	90	85	87	86

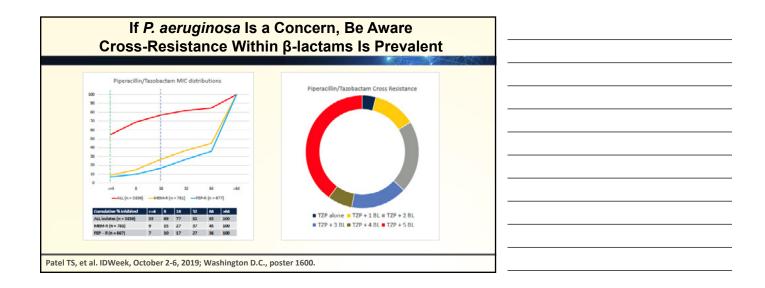
Aminoglycoside breakpoints based on 90% PTA of achieving 1log₁₀ reduction (tobra/gent ≤1, amikacin ≤2); Meropenem breakpoint based on 2 mg q8h dosing (3-hour infusion) – MIC breakpoint of 8

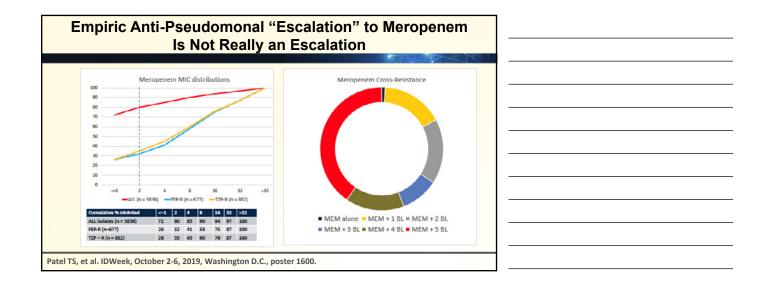
• Are you giving standard infusions of piperacillin-tazobactam?

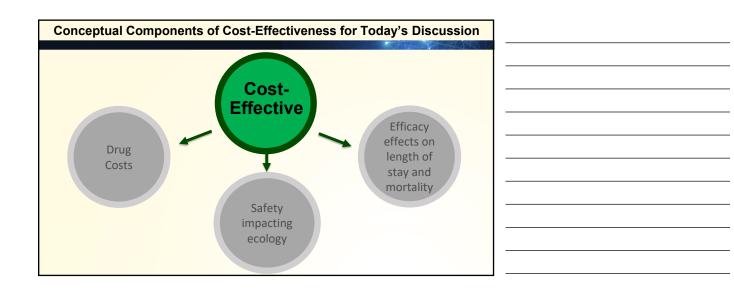
Klatt M, et al. ECCMID 2021 (July 9-12); Vienna, Austria.

U	h	0	h		•

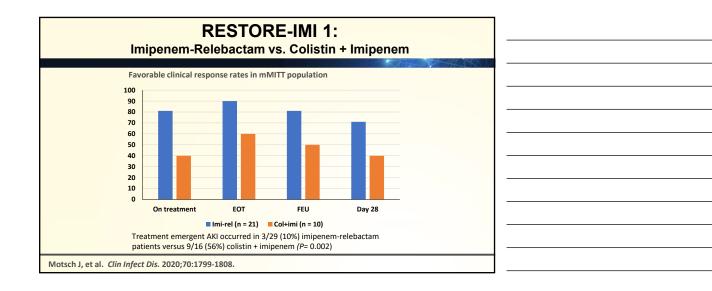
						-
	Monotherapy	Cipro	Levo	Gent	Tobra	Amikacin
Pip-tazo	54	75	81	70	81	72
Cefepime	74	79	85	78	83	79
Ceftazidime	71	82	87	80	86	80
Meropenem	74	80	85	78	85	79
Meropenem	83	85	90	85	87	86


• Are you giving standard infusions of piperacillin-tazobactam?


Klatt M, et al. ECCMID 2021 (July 9-12); Vienna, Austria.


	Monotherapy	Cipro	Levo	Gent	Tobra	Amikacin
Pip-tazo	54	75	81	70	81	72
Cefepime	74	79	85	78	83	79
Ceftazidime	71	82	87	80	86	80
Meropenem	74	80	85	78	85	79
Meropenem	83	85	90	85	87	86
Ceftaz/avi	88	90	93	88	91	89
Mero/vabor	87	89	93	87	89	88

 _



	zobactam versus I e Treatment of Dru						 	
	nulticenter, comparativ lichigan and Central O		study fr	om 6 sites i	in		 	
 Ceftolozane/taz 	y for							
MDR/XDR P. ac	eruginosa							
	ia (majority VAP), ~70	0% ICU, ∼40% se [,]	vere se	epsis/septic	shock		 	
 ~70% pneumon 		•		· ·	shock			
 ~70% pneumon 	ia (majority VAP), ~70	•		· ·	Shock Adjusted Odds Ratio ^a (95% Cl)			
~70% pneumon Table 3. Comparative clinical or	ia (majority VAP), ~70 Itcomes between Ceftolozane/Tezobact	tam and Polymyxin or Aminogly Polymyxin/Aminoglycoside	rcoside trea	ted patients Odds Ratio	Adjusted Odds	CI)		
~70% pneumon Table 3. Comparative clinical or Outcome	ia (majority VAP), ~70 Iteomes between Ceftolozane/Tezobact Ceftolozane/ Tazobectam (N = 100)	tam and Polymyxin or Aminogly Polymyxin/Aminoglycoside (N = 100)	r coside trea P Value	ted patients Odds Ratio (95% CI)	Adjusted Odds Ratio ^a (95% CI)	CI)		

			VIII - ANTHAN
	CT n/N (%)	MEM n/N (%)	% Treatment Difference (95% CI)
28-day all-cause mortality (ITT)	12/53 (22.6%)	18/40 (45.0%)	22.4 (3.11, 40.09)
Clinical cure at TOC (ITT)	26/53 (49.1%)	15/40 (37.5%)	11.6 (-8.61, 30.18)
28-day all-cause mortality (mITT)	7/39 (17.9%)	11/24 (45.8%)	27.9 (4.68, 49.98)
Clinical cure at TOC (CE)	21/33 (63.6%)	9/20 (45.0%)	18.6 (-8.23, 42.49)
Microbiologic response at TOC (mITT)	26/39 (66.7%)	16/24 (66.7%)	0.0 (-21.96, 23.66)
Microbiologic response at TOC (ME)	10/17 (58.8%)	4/7 (57.1%)	1.7 (-33.70,39.27)

_	

The "Old Hats"

- Ceftolozane/tazobactam
 - Ceftolozane: broad-spectrum cephalosporin
 - Tazobactam: BLI, largely to improve Enterobacterales activity
 - Claim to fame: relatively stable to all <u>MAJOR</u> mechanisms of βlactam resistance in *P. aeruginosa*
- Ceftazidime/avibactam
 - Avibactam: first-in-class non β-lactam β-lactamase inhibitor
 - Potent inhibitor of class A, C, and some class D enzymes
 - Notably KPC and OXA-48
 - Most relevant to *P. aeruginosa:* ampC type (class C)

Carbapenem-resistant *P. aeruginosa*: Are ceftolozane/tazobactam and ceftazidime/avibactam the same?

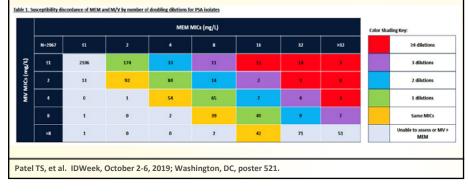
	Ceftolozane/Taz	obactam	Ceftazidime/A	vibactam
	% Susceptible	MIC50/90	% Susceptible	MIC50/90
Buehrle (n= 38)	92%	1/4	92%	4/8
Grupper (n= 290)	91%	1/4	81%	4/16
Humphries (n =220)	66%	NR	53%	NR

Buehrle DJ, et al. Antimicrob Agents Chemother. 2016;60:3227-3231.

Grupper M. Antimicrob Agents Chemother. 2017;61(10):e00875-17.

Humphries R, et al. Antimicrob Agents Chemother. 2017;61(12):e01858-17.

Antimicrobial Susceptibility and Carbapenem Co-Resistance Among Piperacillin/Tazobactam-Resistant (P/T-R) *Pseudomonas aeruginosa* Asia/Pacific SMART⁺ Data: 2016-2018


Antimicrobial Agent	P/T-R (n=1262)	P/T-R + MEM-R (n=545)
Ceftolozane/tazobactam	64.6	34.3
Meropenem	40.3	0.0
Imipenem	46.7	5.3
Cefepime	28.6	9.5
Ceftazidime	22.9	12.5
Aztreonam	33.0	16.9
Ciprofloxacin	38.2	12.1
Amikacin	67.8	39.1
Colistin	97.7	95.6
SMART = Study for Monitoring A	ntimicrobial Resistance Trend	ls MEM-R = Meropenem-resistar

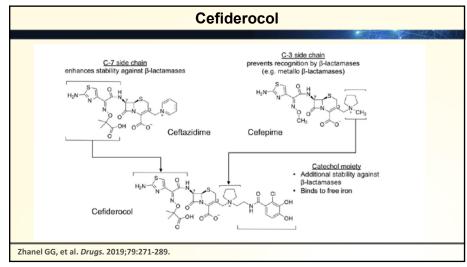
Michigan Medi	cine 2018	
P. aeruginosa	Ceftazidime/avibactam	Ceftolozane/tazobactam
All isolates n = 2,972	96%	94%
Pan β-lactam resistant N = 217	59%	42%

	-					1 145411785	<u> </u>		
•	/aborbactam Unique boronic acid BLI Designed to inhibit Does minimal for merop Vaborbactam, muc	KPC, som enem in <i>P.</i>	aerugino	sa			-	 	
	P. aeruginosa (n-98)	MIC₅₀ (µg/ml)	MIC ₉₀ (µg/ml)	Range (µg/ml)	% Susceptible				
	Piperacillin-tazobactam	16/4	>128/4	16/4 to > 128/4	52				
	Ceftazidime	8	>16	1 to > 16	37		-		
	Amikacin	4	16	<u><</u> 0.5 to > 64	94				
	Ciprofloxacin	>4	>4	<u><</u> 0.125 to > 4	35		-		
	Meropenem	8	32	4 to >64	0				
	Meropenem-RPX7009 (4µg/ml)	8/4	32/4	0.125/4 to >64/4	NA		-		-
	Meropenem-RPX7009 (8µg/ml)	8/8	32/8	0.25/8 to 64/8	NA				

Importantly, Things Are Not Absolute

Comparative in vitro activity of meropenem/vaborbactam and meropenem against a collection of real-world clinical isolates of *Pseudomonas aeruginosa*

Imipenem/Relebactam


Addition of "avibactam-like" β-lactamase inhibitor to imipenem-cilastatin

- As with avibactam, will handle the β -lactamase part of imipenem resistance
 - Will not be overly helpful against carbapenemases in *P. aeruginosa* (largely MBL)
 - Imipenem hydrolysis by ampC insufficient for resistance, but when combined with porin deficiency it can cause resistance

	MIC ₅₀ (µg/ml)	MIC ₉₀ (µg/ml)	Range (µg/ml)	% Susceptible
Imipenem-resistant P. aeruginosa (n=144)				
Imipenem	8	>16	4 to >16	0
Imipenem + relebactam	1/4	2/4	0.25/4 to >64/4	92
puebla A, et al. Antimicrob Agents Chemother. 2015;	59:5029-5031	ι.		

Activity of Imipenem/Relebactam Against MDR Pseudomonas aeruginosa in Europe: SMART 2015-2017

MDR Phenotype	Imipenem/ relebactam	Imipenem	Cefepime	Aztreonam	Pip/Tazo
R to 3 agents N = 547	99%	61%	58%	2%	39%
R to 4 agents N = 342	97%	42%	32%	1%	12%
R to 5 agents N = 490	83%	14%	5%	0%	5%
R to 6 agents N = 509	40%	0%	0.4%	0%	0%
R to 7 agents N = 14	64%	0%	0%	0%	0%

Cefiderocol Activity Against CR-PA

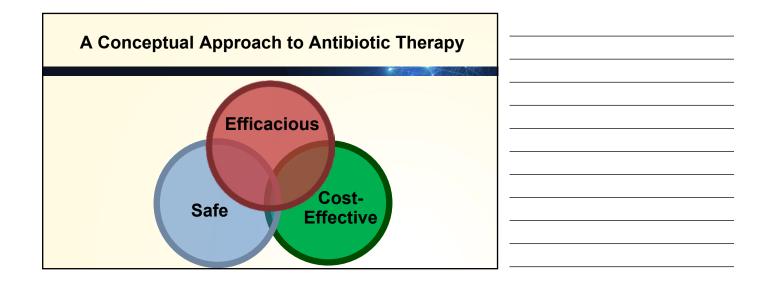
P. aeruginosa (n=82)	-0.02 1	0.10	0.5		NA		
cefiderocol	≤0.03-1	0.12	0.5			NA	NA
meropenem	4->64	32	>64		0	14.6	85.4
ceftozidime	4->64	32	>64		13.4	26.8	59.8
cefepime	1->16	16	>16		25.6	43.9	30.5
ceftazidime/avibactam	1->64	16	>64		NA	NA	NA
ceftolozane/tazobactam	0.5->64	>64	>64		NA	NA	NA
aztreonam	≤0.5->32	16	>32		48.8	19.5	31.
omikacin	<4->64	64	>64		40.2	8.5	51.2
ciprofloxocin	≤0.25->4	>4	>4		19.5	1.2	79.3
colistin	<0.5->8	≤0.5	1		97.6	1.2	1.2
tigecycline	<0.25->4	>4	>4		NA	NA	NA
Pseudomonas aeruginosa (all)	0.06	0.5	≤ 0.002 to 8	2	8	0.5	8
Multidrug-resistant	0.25	1	≤ 0.002 to 32	32	> 64	32	> 64
Ceftazidime-avibactam non-susceptible ^e	0.12	1	≤ 0.002 to 4	16	64	16	64
Ceftolozane-tazobactam non-susceptible	0.25	4	0.004 to 8	8	64	16	32
Meropenem non-susceptible ^a	0.25	1	0.008 to 4	8	64	8	16

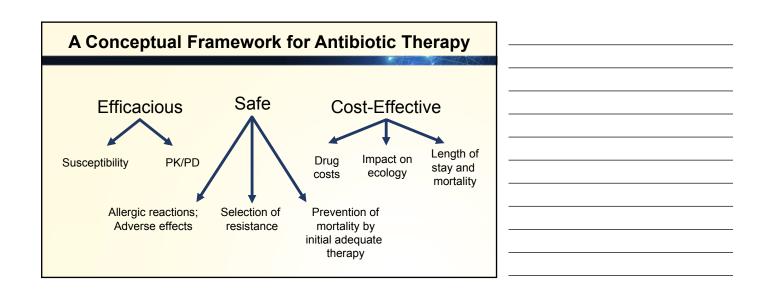
Zhanel GG, et al. Drugs. 2019;79:271-289.

				domized, op sed, descript				
	Nosocomial p	eneumonia	Bloodstream sepsis	infections or	Complicated infections	urinary tract	Overall	
	Cefiderocol	Best available	Cefiderocol	Best available	Cefiderocol	Best available	Cefiderocol	Best available
	(n=45)	therapy (n=22)	(n=30)	therapy (n=17)	(n=26)	therapy (n=10)	(n=101)	therapy (n=49)
Day 14	11 (24%;	3 (14%;	5 (17%;	1 (6%;	3 (12%;	2 (20%;	19 (19%;	6 (12%;
	12·9—39·5)	2-9-34-9)	5-6-34-7)	0·1-28·7)	2·4-30·2)	2-5-55-6)	11-7-27-8)	4-6-24-8)
Day 28	14 (31%;	4 (18%:	7 (23%:	3 (18%:	4 (15%:	2 (20%;	25 (25%:	9 (18%:
	18·2-46·6)	5-2-40-3)	9·9-42·3)	3·8-43-4)	4-4-34-9)	2-5-55-6)	16-7-34-3)	8-8-32-0)
End of study	19 (42%;	4 (18%;	11 (37%;	3 (18%;	4 (15%;	2 (20%;	34 (34%;	9 (18%;
	27·7-57·8)	5-2-40-3)	19-9-56-1)	3·8-43·4)	4·4-34·9)	2-5-55-6)	24-6-43-8)	8-8-32-0)

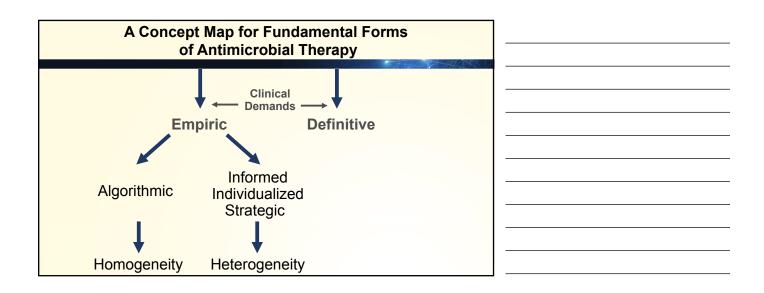
											//7/	
		Sing	le-Agent Resist	ance	Dou	ble-Agent Re	sistance	Triple-Agent Resistance		Novel Age	nt Resistance	2
	Overall (N=694)	P/T (MIC > 16) (N=171)	Mero (MIC > 2) (N=140)	Cefepime (MIC > 8) (N=101)	Mero + P/T (N=97)	Cefepime + P/T (N=87)	Cefepime + Mero (N=65)	Cefepime + P/T + Mero (N=58)	M/V (MIC > 8) (N=37)	I/R (MIC > 2) (M=21)	C/A (MIC > 8) (N=40)	C/T (MIC > (N=44
P/T	75%		31%	14%			11%		8%	38%	23%	32%
Mero	80%	43%		36%		33%			0%	5%	13%	20%
Cefepime	85%	49%	54%		40%				27%	33%	13%	27%
M/V	95%	80%	74%	73%	65%	71%	58%	57%		48%	48%	57%
I/R	97%	91%	83%	84%	85%	85%	75%	78%	65%		68%	73%
C/A	94%	82%	75%	65%	70%	66%	51%	50%	43%	48%		34%
С/Т	94%	82%	75%	68%	71%	70%	54%	55%	49%	52%	28%	
Cefiderocol	98%	96%	94%	90%	94%	92%	88%	90%	89%	95%	80%	80%

	A Patient for Discussion	
•	A 52-year-old woman undergoes emergent 5-vessel coronary artery bypass graft surgery at a second second hospital.	
	anery bypass gran surgery at a second nospital.	
•	Her post-operative course is complicated by intermittent bouts	
	of flash pulmonary edema and associated hypotension.	
_	On a star day to be days	
-	On post-op day 4, she develops fever, purulent sputum, and	
	new pulmonary infiltrates on chest x-ray.	
-	Decod on aligical findings and blood gapps, the notiont is	
	Based on clinical findings and blood gases, the patient is	
	managed Markana.	


A Patient for Discussion


- A 52-year-old woman undergoes emergent 5-vessel coronary artery bypass graft surgery at a community hospital with no significant patterns of resistance.
- Her post-operative course is complicated by intermittent bouts of flash pulmonary edema and associated hypotension.
- On post-op day 4, she develops fever, purulent sputum, and new pulmonary infiltrates on chest x-ray.
- Based she is hemodynamically stable with good oxygenation on 4 liters of nasal oxygen, she is managed on the ward.

A Patient for Discussion


- A 52-year-old woman undergoes emergent 5-vessel coronary artery bypass graft surgery at an academic medical center with a 5% rate of serine carbapenemases.
- Her post-operative course is complicated by intermittent bouts of flash pulmonary edema and associated hypotension.
- On post-op day 4, she develops fever, purulent sputum, and new pulmonary infiltrates on chest x-ray.
- Because of profound hypoxemia and hemodynamic instability, she is moved to the ICU and intubated.

	A Patient for Discussion
•	A 52-year-old woman undergoes emergent 5-vessel coronary artery bypass graft surgery at an urban inner city hospital medical center that has experienced a recent outbreak of infection due to metallo carbapenemases.
•	Her post-operative course is complicated by intermittent bouts of flash pulmonary edema and associated hypotension.
•	On post-op day 4, she develops fever, purulent sputum, and new pulmonary infiltrates on chest x-ray.
•	Because of profound hypoxemia and hemodynamic instability, she is moved to the ICU and intubated.

Homogeneous	Heterogeneous	
Drug formulary	Open access	
Restrictive policies	Choice	
Forced consultation	Initiated consultation	
Controlled information	Open information	
Static guidelines	Dynamic guidelines	
Monosynaptic decisions	Polysynaptic decisions	
Epidemic resistance	Stable resistance	
Controls resistance	Manages resistance	
Regulatory policies	Quality improvement	
Component management	Clinical integration	
Enforced Decisions	Informed Decisions	

Continuing Professional Development Reflect | Plan | Do | Evaluate

Center for Independent Healthcare Education is committed to supporting pharmacists in their Continuing Professional Development (CPD) and lifelong learning. Please use this form to incorporate the learning from this educational activity into your everyday practice.

Continuing Professional Development: a self-directed, ongoing, systematic and outcomes-focused approach to learning and professional development that assists individuals in developing and maintaining continuing competence, enhancing their professional practice, and supporting achievement of their career goals.

CPD Value Statement:

"Pharmacists who adopt a CPD approach accept the responsibility to fully engage in and document their learning through reflecting on their practice, assessing and identifying professional learning needs and opportunities, developing and implementing a personal learning plan, and evaluating their learning outcomes with the goal of enhancing the knowledge, skills, attitudes and values required for their pharmacy practice."

REFLECT

Consider my current knowledge and skills, and self-assess my professional development needs and goals in the area of multi-drug resistant Gram-negative infections.

PLAN

Develop a "Personal Learning Plan" to achieve intended outcomes, based on what and how I want or need to learn.

Develop objectives that are specific for you, measurable, achievable, relevant to the learning/ practice topic, and define the time frame to achieve them.

DO

Implement my learning plan utilizing an appropriate range of learning activities and methods.

List learning activities that you will engage in to meet your goals.

List resources (e.g. materials, other people) that you might use to help achieve your goal.

EVALUATE

Consider the outcomes and effectiveness of each learning activity and my overall plan, and what (if anything) I want or need to do next.

Monitor progress regularly toward achievement of your goal.